
# nth Roots

### **Main Ideas**

- Simplify radicals.
- Use a calculator to approximate radicals.

#### **New Vocabulary**

*n*th root principal root



# GET READY for the Lesson

The radius *r* of a sphere with volume *V* can be found using the formula  $r = \sqrt[3]{\frac{3V}{4\pi}}$ . This is an example of an equation that contains an *n*th root. In this case, n = 3.



**Simplify Radicals** Finding the square root of a number and squaring a number are inverse operations. To find the square root of a number *n*, you must find a number whose square is *n*.

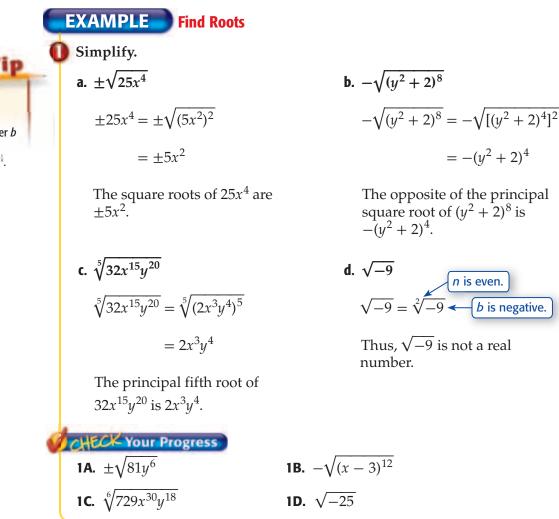
Similarly, the inverse of raising a number to the *n*th power is finding the *n*th root of a number. The table below shows the relationship between raising a number to a power and taking that root of a number.

| Powers      | Factors                                                                                    | Roots                                         |
|-------------|--------------------------------------------------------------------------------------------|-----------------------------------------------|
| $a^3 = 125$ | $5 \cdot 5 \cdot 5 = 125$                                                                  | 5 is a cube root of 125.                      |
| $a^4 = 81$  | $3 \cdot 3 \cdot 3 \cdot 3 = 81$                                                           | 3 is a fourth root of 81.                     |
| $a^5 = 32$  | $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 32$                                                   | 2 is a fifth root of 32.                      |
| $a^n = b$   | $\underbrace{a \cdot a \cdot a \cdot a \cdot \dots \cdot a}_{n \text{ factors of } a} = b$ | <i>a</i> is an <i>n</i> th root of <i>b</i> . |

This pattern suggests the following formal definition of an nth root.

| KEY C   | ONCEPT Definition of nth Root                                                                                        |
|---------|----------------------------------------------------------------------------------------------------------------------|
| Word    | For any real numbers $a$ and $b$ , and any positive integer $n$ , if $a^n = b$ , then $a$ is an $n$ th root of $b$ . |
| Example | Since $2^5 = 32$ , 2 is a fifth root of 32.                                                                          |

The symbol  $\sqrt[n]{}$  indicates an *n*th root.




Some numbers have more than one real *n*th root. For example, 36 has two square roots, 6 and -6. When there is more than one real root, the nonnegative root is called the **principal root**. When no index is given, as in  $\sqrt{36}$ , the radical sign indicates the principal square root. The symbol  $\sqrt[n]{b}$  stands for the principal *n*th root of *b*. If *n* is odd and *b* is negative, there will be no nonnegative root. In this case, the principal root is negative.

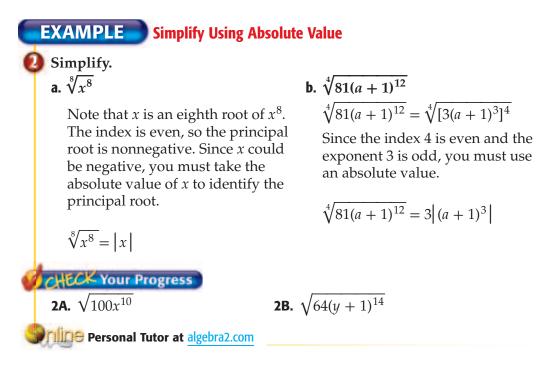
| $\sqrt{16} = 4$ | $\sqrt{16}$ indicates the principal square root of 16. |
|-----------------|--------------------------------------------------------|
|-----------------|--------------------------------------------------------|

- $-\sqrt{16} = -4$   $-\sqrt{16}$  indicates the opposite of the principal square root of 16.
- $\pm\sqrt{16} = \pm4$  $\pm\sqrt{16}$  indicates both square roots of 16.  $\pm$  means positive or negative.
- $\sqrt[3]{-125} = -5$   $\sqrt[3]{-125}$  indicates the principal cube root of -125.
- $-\sqrt[4]{81} = -3$   $-\sqrt[4]{81}$  indicates the opposite of the principal fourth root of 81.

| CONCEPT SUMMARY |                                                                     | Real nth roots of b, $\sqrt[n]{b}$ , or $-\sqrt[n]{b}$          |                   |  |
|-----------------|---------------------------------------------------------------------|-----------------------------------------------------------------|-------------------|--|
| n               | √ <i>b</i> if <i>b</i> > 0                                          | ∜ <b>b</b> if <b>b</b> < 0                                      | <b>b</b> = 0      |  |
| even            | one positive root, one negative<br>root $\pm \sqrt[4]{625} = \pm 5$ | no real roots $\sqrt{-4}$ not a real number                     | one real root, 0  |  |
| odd             | one positive root, no negative roots $\sqrt[3]{8} = 2$              | no positive roots,<br>one negative root<br>$\sqrt[5]{-32} = -2$ | $\sqrt[n]{0} = 0$ |  |



**Study Tip** Fractional **Exponents** 


For any real number b and any positive integer *n*,  $\sqrt[n]{b} = b^{\frac{1}{n}}$ .

*b* is negative.

When you find the *n*th root of an even power and the result is an odd power, you must take the absolute value of the result to ensure that the answer is nonnegative.

$$\sqrt{(-5)^2} = |-5| \text{ or } 5$$
  $\sqrt{(-2)^6} = |(-2)^3| \text{ or } 8$ 

If the result is an even power or you find the *n*th root of an odd power, there is no need to take the absolute value. *Why*?



**Approximate Radicals with a Calculator** Recall that real numbers that cannot be expressed as terminating or repeating decimals are *irrational numbers*. Approximations for irrational numbers are often used in real-world problems.

## EXAMPLE

# **Study Tip**

#### Graphing Calculators

To find a root of index greater than 2, first type the index. Then select  $\sqrt[3]{}$  from the **MATH** menu. Finally, enter the radicand.

**PHYSICS** The distance a planet is from the Sun is a function of the length of its year. The formula is  $d = \sqrt[3]{6t^2}$ , where *d* is the distance of the planet from the Sun in millions of miles and *t* is the number of Earth-days in the planet's year. If the length of a year on Mars is 687 Earth-days, how far from the Sun is Mars?

 $d = \sqrt[3]{6t^2}$ 

**Original formula** 

 $=\sqrt[3]{6(687)^2}$  or about 141.48 t = 687

Mars is approximately 141.48 million miles from the Sun.

**CHECK** According to NASA, Mars is approximately 142 million miles from the Sun. So, 141.48 million miles is reasonable. ✓

CHECK Your Progress

**3.** Approximately how far away from the Sun is Earth?

HECK Your Understanding

Examples 1, 2

| (r | <mark>эр.</mark> 4 | 403- | -404) |
|----|--------------------|------|-------|

| Simplify.                 |                           |                             |                              |
|---------------------------|---------------------------|-----------------------------|------------------------------|
| <b>1.</b> $\sqrt[3]{64}$  | <b>2.</b> $\sqrt{(-2)^2}$ | <b>3.</b> $\sqrt[5]{-243}$  | <b>4.</b> $\sqrt[4]{-4096}$  |
| <b>5.</b> $\sqrt[3]{x^3}$ | <b>6.</b> $\sqrt[4]{y^4}$ | <b>7.</b> $\sqrt{36a^2b^4}$ | <b>8.</b> $\sqrt{(4x+3y)^2}$ |

Example 3 (p. 404)

- Use a calculator to approximate each value to three decimal places. 9.  $\sqrt{77}$  10.  $-\sqrt[3]{19}$  11.  $\sqrt[4]{48}$
- **12. SHIPPING** Golden State Manufacturing wants to increase the size of the boxes it uses to ship its products. The new volume *N* is equal to the old volume *V* times the scale factor *F* cubed, or  $N = V \cdot F^3$ . What is the scale factor if the old volume was 8 cubic feet and the new volume is 216 cubic feet?

# Exercises

| HOMEWORK HELP    |                 |  |  |
|------------------|-----------------|--|--|
| For<br>Exercises | See<br>Examples |  |  |
| 13–22            | 1               |  |  |
| 23–36            | 2               |  |  |
| 37–50            | 3               |  |  |

| Simplify.                     |                                |                                  |                                      |
|-------------------------------|--------------------------------|----------------------------------|--------------------------------------|
| <b>13.</b> $\sqrt{225}$       | <b>14.</b> $\pm \sqrt{169}$    | <b>15.</b> $\sqrt{-(-7)^2}$      | <b>16.</b> $\sqrt{(-18)^2}$          |
| <b>17.</b> <sup>3</sup> √−27  | <b>18.</b> $\sqrt[7]{-128}$    | <b>19.</b> $\sqrt{\frac{1}{16}}$ | <b>20.</b> $\sqrt[3]{\frac{1}{125}}$ |
| <b>21.</b> $\sqrt{0.25}$      | <b>22.</b> $\sqrt[3]{-0.064}$  | <b>23.</b> $\sqrt[4]{z^8}$       | <b>24.</b> $-\sqrt[6]{x^6}$          |
| <b>25.</b> $\sqrt{49m^6}$     | <b>26.</b> $\sqrt{64a^8}$      | <b>27.</b> $\sqrt[3]{27r^3}$     | <b>28.</b> $\sqrt[3]{-c^6}$          |
| <b>29.</b> $\sqrt{(5g)^4}$    | <b>30.</b> $\sqrt[3]{(2z)^6}$  | <b>31.</b> $\sqrt{25x^4y^6}$     | <b>32.</b> $\sqrt{36x^4z^4}$         |
| <b>33.</b> $\sqrt{169x^8y^4}$ | <b>34.</b> $\sqrt{9p^{12}q^6}$ | <b>35.</b> $\sqrt[3]{8a^3b^3}$   | <b>36.</b> $\sqrt[3]{-27c^9d^{12}}$  |

#### Use a calculator to approximate each value to three decimal places.

| <b>37.</b> $\sqrt{129}$       | <b>38.</b> $-\sqrt{147}$       | <b>39.</b> $\sqrt{0.87}$        |
|-------------------------------|--------------------------------|---------------------------------|
| <b>40.</b> $\sqrt{4.27}$      | <b>41.</b> $\sqrt[3]{59}$      | <b>42.</b> $\sqrt[3]{-480}$     |
| <b>43.</b> $\sqrt[4]{602}$    | <b>44.</b> $\sqrt[5]{891}$     | <b>45.</b> $\sqrt[6]{4123}$     |
| <b>46.</b> $\sqrt[7]{46,815}$ | <b>47.</b> $\sqrt[6]{(723)^3}$ | <b>48.</b> $\sqrt[4]{(3500)^2}$ |

**49. AEROSPACE** The radius *r* of the orbit of a satellite is given by  $r = \sqrt[3]{\frac{GMt^2}{4\pi^2}}$ ,

where *G* is the universal gravitational constant, *M* is the mass of the central object, and *t* is the time it takes the satellite to complete one orbit. Find the radius of the orbit if *G* is  $6.67 \times 10^{-11}$  N  $\cdot$  m<sup>2</sup>/kg<sup>2</sup>, *M* is  $5.98 \times 10^{24}$  kg, and *t* is  $2.6 \times 10^{6}$  seconds.

- **50. SHOPPING** A certain store found that the number of customers that will attend a limited time sale can be modeled by  $N = 125\sqrt[3]{100Pt}$ , where *N* is the number of customers expected, *P* is the percent of the sale discount, and *t* is the number of hours the sale will last. Find the number of customers the store should expect for a sale that is 50% off and will last four hours.
- **51. OPEN ENDED** Write a number whose principal square root and cube root are both integers.
- **52. REASONING** Determine whether the statement  $\sqrt[4]{(-x)^4} = x$  is *sometimes*, *always*, or *never* true.

| EXTRA PRACTICE                     |  |
|------------------------------------|--|
| See pages 906 and 932.             |  |
| Math                               |  |
| Self-Check Quiz at<br>algebra2.com |  |

H.O.T. Problems.....

- **53.** CHALLENGE Under what conditions is  $\sqrt{x^2 + y^2} = x + y$  true?
- **54. REASONING** Explain why it is not always necessary to take the absolute value of a result to indicate the principal root.
- **55.** *Writing in Math* Refer to the information on page 402 to explain how *n*th roots apply to geometry. Analyze what happens to the value of *r* as the value of *V* increases.

# STANDARDIZED TEST PRACTICE

| <b>56. ACT/SAT</b> Which of the following is closest to $\sqrt[3]{7.32}$ ? | <b>57. REVIEW</b> What is the product of the complex numbers $(5 + i)$ and $(5 - i)$ ? |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| <b>A</b> 1.8                                                               | F 24                                                                                   |
| <b>B</b> 1.9                                                               | <b>G</b> 26                                                                            |
| <b>C</b> 2.0                                                               | H $25 - i$                                                                             |
| <b>D</b> 2.1                                                               | J 26 – 10 <i>i</i>                                                                     |
|                                                                            |                                                                                        |
|                                                                            |                                                                                        |

| 6000 | -        |        |       |    |
|------|----------|--------|-------|----|
| Spi  | and and  | Day    | vilor |    |
| 301  |          | INCE I | vie   | W. |
| -    | Contra - |        |       |    |

| Graph each function. State the | ▼                             |                                |
|--------------------------------|-------------------------------|--------------------------------|
| <b>58.</b> $y = \sqrt{x - 2}$  | <b>59.</b> $y = \sqrt{x} - 1$ | <b>60.</b> $y = 2\sqrt{x} + 1$ |

**61.** Determine whether the functions f(x) = x - 2 and g(x) = 2x are inverse functions. (Lesson 7-2)

Simplify. (Lesson 5-4)

| <b>62.</b> $(3+2i) - (1-7i)$ | <b>63.</b> $(8-i)(4-3i)$     | <b>64.</b> $\frac{2+3i}{1+2i}$ |
|------------------------------|------------------------------|--------------------------------|
| <b>62.</b> $(5+2i) - (1-7i)$ | <b>63.</b> $(0 - t)(4 - 5t)$ | 1+2i                           |

#### Solve each system of equations. (Lesson 3-2)

| <b>65.</b> $2x - y = 7$ | <b>66.</b> $4x + y = 7$   | <b>67.</b> $\frac{1}{4}x + \frac{2}{3}y = 3$ |
|-------------------------|---------------------------|----------------------------------------------|
| x + 3y = 0              | $3x + \frac{4}{5}y = 5.5$ | $\frac{1}{2}x + y = -2$                      |

**68. BUSINESS** A dry cleaner ordered 7 drums of two different types of cleaning fluid. One type costs \$30 per drum, and the other type costs \$20 per drum. The total cost was \$160. How much of each type of fluid did the company order? Write a system of equations and solve by graphing. (Lesson 3-1)

Graph each function. (Lesson 2-6)

**69.** f(x) = 5

**70.** 
$$f(x) = |x - 3|$$
 **71.**  $f(x) = |2x| + 3$ 

GET READY for the Next Lesson

PREREQUISITE SKILL Find each product. (Lesson 6-2)72. (x + 3)(x + 8)73. (y - 2)(y + 5)74. (a + 2)(a - 9)75. (a + b)(a + 2b)76. (x - 3y)(x + 3y)77. (2w + z)(3w - 5z)